Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731981

RESUMEN

We aimed to analyze the association between CYP7B1 and prostate cancer, along with its association with proteins involved in cancer and metabolic processes. A retrospective analysis was performed on 390 patients with prostate cancer (PC) or benign prostatic hyperplasia (BPH). We investigated the interactions between CYP7B1 expression and proteins associated with PC and metabolic processes, followed by an analysis of the risk of biochemical recurrence based on CYP7B1 expression. Of the 139 patients with elevated CYP7B1 expression, 92.8% had prostate cancer. Overall, no increased risk of biochemical recurrence was associated with CYP7B1 expression. However, in a non-diabetic subgroup analysis, higher CYP7B1 expression indicated a higher risk of biochemical recurrence, with an HR of 1.78 (CI: 1.0-3.2, p = 0.05). PC is associated with elevated CYP7B1 expression. In a subgroup analysis of non-diabetic patients, elevated CYP7B1 expression was associated with an increased risk of biochemical recurrence, suggesting increased cancer aggressiveness.


Asunto(s)
Biomarcadores de Tumor , Familia 7 del Citocromo P450 , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Biomarcadores de Tumor/metabolismo , Anciano , Familia 7 del Citocromo P450/metabolismo , Familia 7 del Citocromo P450/genética , Persona de Mediana Edad , Progresión de la Enfermedad , Estudios Retrospectivos , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Inmunohistoquímica , Análisis de Matrices Tisulares , Recurrencia Local de Neoplasia/metabolismo , Esteroide Hidroxilasas
2.
Viruses ; 16(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38543704

RESUMEN

The continuous emergence of SARS-CoV-2 variants caused the persistence of the COVID-19 epidemic and challenged the effectiveness of the existing vaccines. The viral proteases are the most attractive targets for developing antiviral drugs. In this scenario, our study explores the use of HIV-1 protease inhibitors against SARS-CoV-2. An in silico screening of a library of HIV-1 proteases identified four anti-HIV compounds able to interact with the 3CLpro of SARS-CoV-2. Thus, in vitro studies were designed to evaluate their potential antiviral effectiveness against SARS-CoV-2. We employed pseudovirus technology to simulate, in a highly safe manner, the adsorption of the alpha (α-SARS-CoV-2) and omicron (ο-SARS-CoV-2) variants of SARS-CoV-2 and study the inhibitory mechanism of the selected compounds for cell-virus interaction. The results reported a mild activity against the viral proteases 3CLpro and PLpro, but efficient inhibitory effects on the internalization of both variants mediated by cathepsin B/L. Our findings provide insights into the feasibility of using drugs exhibiting antiviral effects for other viruses against the viral and host SARS-CoV-2 proteases required for entry.


Asunto(s)
COVID-19 , Proteasas de Cisteína , Humanos , SARS-CoV-2/genética , Inhibidores de Proteasas/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Cisteína Endopeptidasas/genética , Proteasas Virales , Simulación del Acoplamiento Molecular
3.
Chemistry ; 30(22): e202304276, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38345891

RESUMEN

Volatile organic compounds (VOCs), recognized as hazardous air contaminants, prompt the exploration of sustainable air purification methods. Solar photocatalytic oxidation emerges as a promising solution, utilizing semiconductor photocatalysts like titanium dioxide (TiO2). However, the raw material crisis necessitates reduced TiO2 usage, leading to investigations into TiO2 modification techniques. The study introduces a novel approach by employing natural fibers, specifically loofah sponge, as a TiO2 support. This method aims to maintain photocatalytic activity while minimizing TiO2 content. The article explores using halloysite, a natural clay mineral, as a supportive material, enhancing mechanical strength and adsorption properties. The resulting TiO2/loofah-halloysite composites are evaluated for their efficacy in gas-phase photocatalytic oxidation of toluene and ethanol, chosen as representative VOCs. The conversion of toluene and ethanol on the composite was 88 % and 39 %, respectively, with high selectivity toward CO2. In addition to its high performance, the bio-composite was stable for several conversion cycles, keeping the conversion activity unchanged. The study contributes to developing green hybrid materials for VOC removal, showcasing potential applications across industries.

4.
Pharmaceutics ; 16(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38399286

RESUMEN

Ocular pathologies present significant challenges to achieving effective therapeutic results due to various anatomical and physiological barriers. Natural products such as flavonoids, alone or in association with allopathic drugs, present many therapeutic actions including anticancer, anti-inflammatory, and antibacterial action. However, their clinical employment is challenging for scientists due to their low water solubility. In this study, we designed a liquid formulation based on rutin/sulfobutylether-ß-cyclodextrin (RTN/SBE-ß-CD) inclusion complex for treating ocular infections. The correct stoichiometry and the accurate binding constant were determined by employing SupraFit software (2.5.120) in the UV-vis titration experiment. A deep physical-chemical characterization of the RTN/SBE-ß-CD inclusion complex was also performed; it confirmed the predominant formation of a stable complex (Kc, 9660 M-1) in a 1:1 molar ratio, with high water solubility that was 20 times (2.5 mg/mL) higher than the free molecule (0.125 mg/mL), permitting the dissolution of the solid complex within 30 min. NMR studies revealed the involvement of the bicyclic flavonoid moiety in the complexation, which was also confirmed by molecular modeling studies. In vitro, the antibacterial and antibiofilm activity of the formulation was assayed against Staphylococcus aureus and Pseudomonas aeruginosa strains. The results demonstrated a significant activity of the formulation than that of the free molecules.

5.
Chemistry ; 30(12): e202303984, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127103

RESUMEN

In recent decades, many efforts have been devoted to studying reactions catalyzed in nanoconfined spaces. The most impressive aspect of catalysis in nanoconfined spaces is that the reactivity of the molecules can be smartly driven to disobey classical behavior. A green and efficient three-component aza-Darzens (TCAD) reaction using a catalytic amount of γ-cyclodextrins (CDs) in water has been developed to synthesize N-phenylaziridines. CDs effectively performed this reaction in an environmentally friendly setting, achieving good yields. The same reaction was then performed using polymeric γ-CD such as a γ-cyclodextrin polymer crosslinked (GCDPC) with epichlorohydrin, a sponge-like macroporous γ-cyclodextrin-based cryogel (GCDC), and a γ-cyclodextrin-based hydrogel (GCDH). The homogeneous and heterogeneous catalyst recovery was then studied, and it was proved to be easily recycled several times without relevant activity loss. Water, as a unique and eco-friendly reaction medium, has been utilized for the first time, to the best of our knowledge, in this reaction. The inclusion of the reagents in CDs has been studied and rationalized by NMR spectroscopy experiments and molecular modeling calculations. The credit of the presented protocol includes good yields and catalyst reusability and precludes the use of organic solvents.

6.
Bioorg Chem ; 140: 106794, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37659146

RESUMEN

Designing and discovering compounds for dual-target inhibitors is challenging to synthesize new, safer, and more efficient drugs than single-target drugs, especially to treat multifactorial diseases such as cancer. The simultaneous regulation of multiple targets might represent an alternative synthetic approach to optimize patient compliance and tolerance, minimizing the risk of target-based drug resistance due to the modulation of a few targets. To this end, we conceived for the first time the design and synthesis of dual-ligands σR/HDACi to evaluate possible employment as innovative candidates to address this complex disease. Among all synthesized compounds screened for several tumoral cell lines, compound 6 (Kiσ1R = 38 ± 3.7; Kiσ2R = 2917 ± 769 and HDACs IC50 = 0.59 µM) is the most promising candidate as an antiproliferative agent with an IC50 of 0.9 µM on the HCT116 cell line and no significant toxicity to normal cells. Studies of molecular docking, which confirmed the affinity over σ1R and a pan-HDACs inhibitory behavior, support a possible balanced affinity and activity between both targets.


Asunto(s)
Sistemas de Liberación de Medicamentos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Células HCT116
7.
Org Lett ; 25(35): 6464-6468, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37641853

RESUMEN

Friedel-Crafts benzoylation of N-methylpyrrole 2 can run inside the confined space of the hexameric resorcinarene capsule C. The bridged water molecules at the corner of C act as H-bonding donor groups to polarize the C-Cl bond of benzoyl chlorides 3a-f. Confinement effects on the regiochemistry of the FC benzoylation of N-methylpyrrole are observed. The nature of the para-substituents of 3a-f and their ability to establish H-bonds with the water molecules of C work synergistically with the steric constrictions imposed by the capsule to drive the regiochemistry of products 4a-f. QM investigations indicate that inside the cavity of C, the FC benzoylation of 2 has a bimolecular concerted SN2 mechanism, appropriately, above-plane nucleophilic vinylic substitution (SNVπ)─supported by H-bonding interactions between water molecules and both the leaving Cl atom and the carbonyl group.

8.
Nanomaterials (Basel) ; 13(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37513047

RESUMEN

Bacterial involvement in cancer's development, along with their impact on therapeutic interventions, has been increasingly recognized. This has prompted the development of novel strategies to disrupt essential biological processes in microbial cells. Among these approaches, metal-chelating agents have gained attention for their ability to hinder microbial metal metabolism and impede critical reactions. Nanotechnology has also contributed to the antibacterial field by offering various nanomaterials, including antimicrobial nanoparticles with potential therapeutic and drug-delivery applications. Halloysite nanotubes (HNTs) are naturally occurring tubular clay nanomaterials composed of aluminosilicate kaolin sheets rolled multiple times. The aluminum and siloxane groups on the surface of HNTs enable hydrogen bonding with biomaterials, making them versatile in various domains, such as environmental sciences, wastewater treatment, nanoelectronics, catalytic studies, and cosmetics. This study aimed to create an antibacterial material by combining the unique properties of halloysite nanotubes with the iron-chelating capability of kojic acid. A nucleophilic substitution reaction involving the hydroxyl groups on the nanotubes' surface was employed to functionalize the material using kojic acid. The resulting material was characterized using infrared spectroscopy (IR), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM), and its iron-chelating ability was assessed. Furthermore, the potential for drug loading-specifically, with resveratrol and curcumin-was evaluated through ultraviolet (UV) analysis. The antibacterial assay was evaluated following CLSI guidelines. The results suggested that the HNTs-kojic acid formulation had great antibacterial activity against all tested pathogens. The outcome of this work yielded a novel bio-based material with dual functionality as a drug carrier and an antimicrobial agent. This innovative approach holds promise for addressing challenges related to bacterial infections, antibiotic resistance, and the development of advanced therapeutic interventions.

10.
Int J Mol Sci ; 24(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298393

RESUMEN

This is the first Editorial of the "Molecular Informatics" Section (MIS) of the International Journal of Molecular Sciences (IJMS), which was created towards the end of 2018 (the first article was submitted on 27 September 2018) and has experienced significant growth from 2018 to now [...].

11.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047831

RESUMEN

In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, positron emission tomography (PET), and single-photon emission computed tomography (SPECT) are extensively available and routinely used for disease diagnosis. PET probes with peptide-based targeting are typically composed of small peptides especially developed to have high affinity and specificity for a range of cellular and tissue targets. These probes' key benefits include being less expensive than traditional antibody-based PET tracers and having an effective chemical modification process that allows them to be radiolabeled with almost any radionuclide, making them highly appealing for clinical usage. Currently, as with every pharmaceutical design, the use of in silico strategies is steadily growing in this field, even though it is not part of the standard toolkit used during radiopharmaceutical design. This review describes the recent applications of computational design approaches in the design of novel peptide-based radiopharmaceuticals.


Asunto(s)
Péptidos , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único , Radioisótopos , Radiofármacos , Diseño Asistido por Computadora
12.
Arch Pharm (Weinheim) ; 356(7): e2300174, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37119396

RESUMEN

The ubiquitin-proteasome pathway (UPP) represents the principal proteolytic apparatus in the cytosol and nucleus of all eukaryotic cells. Nowadays, proteasome inhibitors (PIs) are well-known as anticancer agents. However, although three of them have been approved by the US Food and Drug Administration (FDA) for treating multiple myeloma and mantel cell lymphoma, they present several side effects and develop resistance. For these reasons, the development of new PIs with better pharmacological characteristics is needed. Recently, noncovalent inhibitors have gained much attention since they are less toxic as compared with covalent ones, providing an alternative mechanism for solid tumors. Herein, we describe a new class of bis-homologated chloromethyl(trifluoromethyl)aziridines as selective noncovalent PIs. In silico and in vitro studies were conducted to elucidate the mechanism of action of such compounds. Human gastrointestinal absorption (HIA) and blood-brain barrier (BBB) penetration were also considered together with absorption, distribution, metabolism, and excretion (ADMET) predictions.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Relación Estructura-Actividad , Antineoplásicos/farmacología , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Neoplasias/tratamiento farmacológico
13.
Front Mol Biosci ; 10: 1082526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876040

RESUMEN

Currently, the use of probiotic strains and their products represents a promising innovative approach as an antagonist treatment against many human diseases. Previous studies showed that a strain of Limosilactobacillus fermentum (LAC92), previously defined as Lactobacillus fermentum, exhibited a suitable amensalistic property. The present study aimed to purify the active components from LAC92 to evaluate the biological properties of soluble peptidoglycan fragments (SPFs). The cell-free supernatant (CFS) and bacterial cells were separated after 48 h of growth in MRS medium broth and treated for isolation of SPFs. Antimicrobial activity and proliferation analysis on the human cell line HTC116 were performed using technologies such as xCELLigence, count and viability, and clonogenic analysis. MALDI-MS investigation and docking analysis were performed to determine the molecular structure and hypothetical mode of action, respectively. Our results showed that the antimicrobial activity was mainly due to SPFs. Moreover, the results obtained when investigating the SPF effect on the cell line HCT116 showed substantial preliminary evidence, suggesting their significant cytostatic and quite antiproliferative properties. Although MALDI was unable to identify the molecular structure, it was subsequently revealed by analysis of the bacterial genome. The amino acid structure is called peptide 92. Furthermore, we confirmed by molecular docking studies the interaction of peptide 92 with MDM2 protein, the negative regulator of p53. This study showed that SPFs from the LAC92 strain exerted anticancer effects on the human colon cancer HCT116 cell line via antiproliferation and inducing apoptosis. These findings indicated that this probiotic strain might be a potential candidate for applications in functional products in the future. Further examination is needed to understand the specific advantages of this probiotic strain and improve its functional features to confirm these data. Moreover, deeper research on peptide 92 could increase our knowledge and help us understand if it will be possible to apply to specific diseases such as CRC.

14.
Molecules ; 28(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985701

RESUMEN

Ordinary small molecule de novo drug design is time-consuming and expensive. Recently, computational tools were employed and proved their efficacy in accelerating the overall drug design process. Molecular dynamics (MD) simulations and a derivative of MD, steered molecular dynamics (SMD), turned out to be promising rational drug design tools. In this paper, we report the first application of SMD to evaluate the binding properties of small molecules toward FABP4, considering our recent interest in inhibiting fatty acid binding protein 4 (FABP4). FABP4 inhibitors (FABP4is) are small molecules of therapeutic interest, and ongoing clinical studies indicate that they are promising for treating cancer and other diseases such as metabolic syndrome and diabetes.


Asunto(s)
Síndrome Metabólico , Simulación de Dinámica Molecular , Humanos , Diseño de Fármacos , Proteínas de Unión a Ácidos Grasos/metabolismo
15.
Viruses ; 15(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36992372

RESUMEN

It is known that the spike protein of human coronaviruses can bind to a secondary receptor, or coreceptor, to facilitate the virus entry. While HCoV-229E uses human aminopeptidase N (hAPN) as a receptor, HCoV-OC43 binds to 9-O-acetyl-sialic acid (9-O-Ac-Sia), which is linked in a terminal way to the oligosaccharides that decorate glycoproteins and gangliosides on the surface of the host cell. Thus, evaluating the possible inhibitory activity of heparan sulfate, a linear polysaccharide found in animal tissues, and enoxaparin sodium on these viral strains can be considered attractive. Therefore, our study also aims to evaluate these molecules' antiviral activity as possible adsorption inhibitors against non-SARS-CoV. Once the molecules' activity was verified in in vitro experiments, the binding was studied by molecular docking and molecular dynamic simulations confirming the interactions at the interface of the spike proteins.


Asunto(s)
Coronavirus Humano 229E , Coronavirus Humano OC43 , Animales , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enoxaparina , Simulación del Acoplamiento Molecular , Heparitina Sulfato/metabolismo
16.
Nanomaterials (Basel) ; 13(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36839109

RESUMEN

It is well known that skin wound healing could be severely impaired in space. In particular, the skin is the tissue at risk of injury, especially during human-crewed space missions. Here, we propose a hybrid system based on the biocompatible poly 2-hydroxyethyl methacrylate (pHEMA) to actively support a nanocontainer filled with the drug. Specifically, during the cryo-polymerization of HEMA, halloysite nanotubes (HNTs) embedded with thymol (Thy) were added as a component. Thy is a natural pharmaceutical ingredient used to confer wound healing properties to the material, whereas HNTs were used to entrap the Thy into the lumen to ensure a sustained release of the drug. The as-obtained material was characterized by chemical-physical methods, and tests were performed to assess its ability for a prolonged drug release. The results showed that the adopted synthetic procedure allows the formation of a super absorbent system with good swelling ability that can contain up to 5.5 mg of Thy in about 90 mg of dried sponge. Releasing tests demonstrated the excellent material's ability to perform a slow controlled delivery of 62% of charged Thy within a week. As humans venture deeper into space, with more extended missions, limited medical capabilities, and a higher risk of skin wounds, the proposed device would be a versatile miniaturized device for skin repair in space.

17.
Chem Biol Drug Des ; 101(6): 1382-1392, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36813756

RESUMEN

6,7-Benzomorphans have been investigated in medicinal chemistry for developing new drugs. This nucleus could be considered a versatile scaffold. The physicochemical properties of benzomorphan N-substituent are crucial in achieving a definite pharmacological profile at opioid receptors. Thus, the dual-target MOR/DOR ligands LP1 and LP2 were obtained through N-substituent modifications. Specifically, LP2, bearing as N-substituent the (2R/S)-2-methoxy-2- phenylethyl group, is a dual-target MOR/DOR agonist and is successful in animal models of inflammatory and neuropathic pain. To obtain new opioid ligands, we focused on the design and synthesis of LP2 analogs. First, the 2-methoxyl group of LP2 was replaced by an ester or acid functional group. Then, spacers of different lengths were introduced at N-substituent. In-vitro, their affinity profile versus opioid receptors has been performed through competition binding assays. Molecular modeling studies were conducted to deeply analyze the binding mode and the interactions between the new ligands and all opioid receptors.


Asunto(s)
Receptores Opioides delta , Receptores Opioides mu , Animales , Receptores Opioides mu/metabolismo , Receptores Opioides delta/metabolismo , Benzomorfanos/metabolismo , Benzomorfanos/farmacología , Ligandos , Receptores Opioides , Relación Estructura-Actividad
18.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674938

RESUMEN

In the framework of the multitarget inhibitor study, we report an in silico analysis of 1,2-dibenzoylhydrazine (DBH) with respect to three essential receptors such as the ecdysone receptor (EcR), urease, and HIV-integrase. Starting from a crystallographic structural study of accidentally harvested crystals of this compound, we performed docking studies to evaluate the inhibitory capacity of DBH toward three selected targets. A crystal morphology prediction was then performed. The results of our molecular modeling calculations indicate that DBH is an excellent candidate as a ligand to inhibit the activity of EcR receptors and urease. Docking studies also revealed the activity of DBH on the HIV integrase receptor, providing an excellent starting point for developing novel inhibitors using this molecule as a starting lead compound.


Asunto(s)
Ureasa , Modelos Moleculares , Simulación del Acoplamiento Molecular
19.
Biomolecules ; 14(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38254643

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has provoked a global health crisis due to the absence of a specific therapeutic agent. 3CLpro (also known as the main protease or Mpro) and PLpro are chymotrypsin-like proteases encoded by the SARS-CoV-2 genome, and play essential roles during the virus lifecycle. Therefore, they are recognized as a prospective therapeutic target in drug discovery against SARS-CoV-2 infection. Thus, this work aims to collectively present potential natural 3CLpro and PLpro inhibitors by in silico simulations and in vitro entry pseudotype-entry models. We screened luteolin-7-O-glucuronide (L7OG), cynarin (CY), folic acid (FA), and rosmarinic acid (RA) molecules against PLpro and 3CLpro through a luminogenic substrate assay. We only reported moderate inhibitory activity on the recombinant 3CLpro and PLpro by L7OG and FA. Afterward, the entry inhibitory activity of L7OG and FA was tested in cell lines transduced with the two different SARS-CoV-2 pseudotypes harboring alpha (α) and omicron (o) spike (S) protein. The results showed that both compounds have a consistent inhibitory activity on the entry for both variants. However, L7OG showed a greater degree of entry inhibition against α-SARS-CoV-2. Molecular modeling studies were used to determine the inhibitory mechanism of the candidate molecules by focusing on their interactions with residues recognized by the protease active site and receptor-binding domain (RBD) of spike SARS-CoV-2. This work allowed us to identify the binding sites of FA and L7OG within the RBD domain in the alpha and omicron variants, demonstrating how FA is active in both variants. We have confidence that future in vivo studies testing the safety and effectiveness of these natural compounds are warranted, given that they are effective against a variant of concerns.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Productos Biológicos/farmacología , Quimasas , Ácido Fólico
20.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293216

RESUMEN

The ubiquitin-proteasome pathway (UPP) is the major proteolytic system in the cytosol and nucleus of all eukaryotic cells. The role of proteasome inhibitors (PIs) as critical agents for regulating cancer cell death has been established. Aziridine derivatives are well-known alkylating agents employed against cancer. However, to the best of our knowledge, aziridine derivatives showing inhibitory activity towards proteasome have never been described before. Herein we report a new class of selective and nonPIs bearing an aziridine ring as a core structure. In vitro cell-based assays (two leukemia cell lines) also displayed anti-proliferative activity for some compounds. In silico studies indicated non-covalent binding mode and drug-likeness for these derivatives. Taken together, these results are promising for developing more potent PIs.


Asunto(s)
Antineoplásicos , Aziridinas , Neoplasias , Humanos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Complejo de la Endopetidasa Proteasomal/metabolismo , Antineoplásicos/uso terapéutico , Aziridinas/farmacología , Aziridinas/química , Neoplasias/metabolismo , Alquilantes , Ubiquitinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...